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For an integer k ~ 1 and a geometric mesh (ql)~", with q E (0, 00), let

M1.k(x) := k[ql, ... , ql+kJ(. - x)~- l,

N1,k(X) := (ql+k - ql) M1,k(x)/k,

and let Ak(q) be the Gram matrix (f M1,kNJ,k)l,JeZ. It is known that IIAk(q)-II\", is
bounded independently of q. In this paper it is shown that IIA k(q) - 1 II", is strictly
decreasing for q in [1, 00). In particular, the sharp upper bound and lower bound
for Ak(q)-l are obtained:

(
2k \ \ - 12k-l«IIAk(q)-III",« ;) L:(1+2j)-2k

jeZ

for all q E (0, 00 ).

1. INTRODUCTION

Let x:= (x/)':'oo be a strictly increasing biinfinite sequence with x±oo :=
lim/~±oox/ and 1:= (x-oo,x+ oo)' Further, let

S := mSk,i1) := {f E Ck- 2(1) n L oo(I);

II(XI,X/+l) is a polynomial of degree <k}

be the normed linear space of bounded polynomial splines of order k with
breakpoint sequence x and norm 11/11 := sUPxellf(x)l. We shall be concerned
with Ps' the orthogonal projector onto S with respect to the ordinary inner
product

(f, g) := f/(x) g(x) dx,
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but restricted to Lco(I). We want to bound its norm

IIPsll co := sup IIPsfll/llfllco.
!eL",(l)

In 1973, de Boor raised the following

Conjecture [1].

sup IIPsll co ~ constk < 00 .
•

This conjecture has been verified for k = 1,2,3,4 (see de Boor [3] and the
references cited there). De Boor [2] also obtained a bound of Ps in terms of
a global mesh ratio. In general, however, this conjecture seems hard to solve.
For a geometric mesh x, Hollig [8] recently proved the boundedness of Ps'
Later on, Feng and Kozak [6] reproved this result. Before recalling some
results of theirs, we need to introduce some notations. For the mesh
x = (x;)~co' let

Mi.k(X) := k[x/, ..., x/+kJ(' - X):-l

N/.k(x) := ([x/+ 1'... , x/+k]- [x/, ..., X/+k_I))(' - X):-I

= (x/+ k-x/)M/.k(x)lk.

Set

for i, j E 7L.

Let A k E IR lxZ be the biinfinite matrix given by the rule

for (i, j) E 7L X 7L.

It was shown by de Boor [1] that

where D k is a constant depending only on k. Thus bounding Ps is equivalent
to bounding A k I.

Let us restrict ourselves now to a particular case where x is a geometric
mesh: x:= (q/)~co for some q E [1, 00) (note that the case q E (0, I] is
symmetric to the case q E [1, 00); see [6, 8)). Spline interpolation at a
geometric mesh was first investigated by Micchelli [9], who based his
argument on the properties of the so-called generalized Euler-Frobenius
polynomials. Later on, Feng and Kozak [6] developed such a consideration.
Earlier, and in a different way, Hollig [8] made a more precise investigation
into the boundedness of L 2-projections onto splines on a geometric mesh. In
particular, he got the following elegant result (see [8, Theorem 5)):
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THEOREM A. For a geometric mesh x:= (qi),::oo with q E (0, (0), let
Ak(q) be the biinfinite matrix (f Mi.kNj.k)i.jeZ' Then

where

k qV + 1 k-I
ilk(q):= 2k! (k - I)! t2k - 1 Tl ....:....-- Tl

v= 1 qV - 1 v=1

k 1

X j~ II [n(1 + 2j)]2 + (vt)2

with t:= log q. Moreover,

lim ilk(q) = (~)2k 1L (1 + ~j)-2k I
q~l n jeZ \

J~~ ilk(q) = 2k ~ 1

qV + 1
qV _ 1

(1)

(2)

(3)

(4)

Based on numerical evidence, de Boor raised the following

Conjecture. ilk(q) is a monotone increasing function on [1, (0).

This conjecture was verified for k ~ q by Feng and Kozak [7]. They also
showed that ilk(q) ~ Ij(2k - 1) in the same paper.

The purpose of this paper is to confirm the above conjecture. Thus we
have

THEOREM 1. ilk(q) is a monotone increasing function on [1, (0). In
particular,

Note that ill(q) == 1 and that il2(q) == t in terms of a straightforward
calculation. Hence we can restrict ourselves to the case k ~ 3 from now on.

In Section 2, we shall give an alternative proof of Theorem A. Sections 3
and 4 will be devoted to proving the monotonicity of ilk(q) for q E [1,20]
and q E [20, (0), respectively.
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As before, x = (qi),::oo is a geometric mesh with q E (1, ex:» and t = log q.
Consider

~o(x) := [0, 1,..., (2k - 1)LXZj(qZ +qk)

It is easy to verify that

for xE[I,q].

= 0, for 1= 1,..., 2k - 2,

= 1, for 1= 2k - 1. (6)

Since ~o is a polynomial of degree 2k - 1, ~~2k-1) is constant in [1, q]. Hence
(6) yields that

for xE (l,q]. (7)

Now we extend the do.nain of ~o to (0, ex:» as

From (6) we assert that ~ E S2k.x' and that

mE lL. (8)

It follows that

By induction on m, we can obtain

_ _ k ( k qk-m+ 1 + 1 )
[Xo,Xl' ...' xd ~ - (1) D. qm _ 1 ~o(1)

(

k qm + 1)
= (_I)k Tl m _ 1 ~o(1)·

m=l q
(9)



MAX NORM BOUND FOR L 2 SPLINE PROJECTORS 297

From (8) we deduce that

[Xi"'" Xi+k] ~ = (_I)i [XO,•••, Xk]~'

By Peano's theorem (see [4))

(10)

Now we get

fMi,k(X) ~(k)(x)/k! dx = (_I)i (_I)k (Ii q: ~ ~) ~o(1). (11)
m~1 q

Obviously, ~(k)/k! E Sk,x; hence ~(k)/k! may be expanded in a B-spline series

~(k) /k! = .L ajNj,k;

however, ~(k)(qX) = _~(k)(X). Thus

By the uniqueness of B-spline expansion we assert that

Thus we can write

(k)/ " ( .¢J k!=CL.. -IYNj ,k' (12)

where C is a constant to be determined. Now (11) and (12) together give

Let

Then (see de Boor et al. [5))

IIAiq)-'llco = l.Qk(q)I-I.

It remains to determine C. Differentiate (12) k - 1 times,

( )

(k-I)
¢J(2k-')/kl = C .L (-ly Nj,k .

(14)



298 RONG-QING JlA

One the one hand,

.I.(2k-I)( )/k' 1 1
'I' x '=-kl k 2k-1. q +q

On the other hand (see [4 D,

for x E (1, q).

(

(k-I)

L (-IY Ni,k)

= 2(k - 1) (q + 1)(k - 2) '" qk-2 + 1 '" (_I)i ( k-I)-j N.
qk-I_l qk-2_1 q-l j7z q i,l

1 k-I m 1- (' f1 q + '" . k-I-j- 2 k- I), k-I 1 m L.... (-1)1 (q ) Ni •l •
q + m=1 q - 1 jeZ

Thus, for x E (1, q)

(~ (-IY Nj.k) (k-l) (x) = 2(k - I)! qk ~ + 1 [( :: ~ ~ .

From the above calculation we get

C- I = k! (qk + q2k-I)2(k - I)! k
q

= 2k! (k _ I)! qk ill q: + 1 .
m=1 q - 1

(15)

(17)

Finally, (14) and (15) yield that

k m + 1 k-I m + 1
[}k(q) = (_I)k 2k! (k - I)! JI :m _1 DI :m _1 qk~o(I)

= (_I)k 2k! (k-I)! Ii q: + 1 fl q: + 1
m=1 q - 1 m=1 q - 1

X qk[O, 1,..., 2k - 1) . 1 k' (16)
q +q

We follow the procedure in [9) and use a well-known formula for the
divided difference to get

k k [ 1(-1) q 0, 1,..., 2k - 1). k
q +q

( l)k qk [ 2k-1 (2k-1 -I
= -. f. - L f. f1 (z - m)(ezIOgq +qk)) dz,

2m CR j=O crj m=O
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where CR and Cr' stand for positively oriented circles with centers at °and}
J

and radius Rand rj , where R is sufficiently large and rj sufficiently small,
j == 0, 1,..., 2k - 1.

Making R -+ 00, rj -+ °(j = 0, 1,..., 2k - 1) in (17) and using the residue
theorem we get

k k [ 1 1(-I) q 0, I,..., 2k - 1 . k
q +q

(
Zk-I ) -I

== (_I)k qk(_I) j~ Resz=il>r+Z>rjl/t+k Jl (z - v)(eZ!Ogg + qk)

==(_I)k I (t zfTl [i(n+21C})_V+k])-1
jel v=o t

== ~ tZk-I!(zfT
l

[1C+21Cj -i(k-v)t1)
leI v=O

k 1
= t Zk - 1 '\' n -,--=--."z--:--:-.--Z.

J'~I v= 1 (n + 2nj) + (vt)

Thus (2) is proved by substituting the above equality into (16). Then it is
straightforward to verify (3). As to (4), we have

lim ilk(q) = (-ll2k!(k-1)!j(2k-l)! lim ZII (_1)1+1 (2k-l) 1qk k
q-+oo q-+oo 1=0 I q + q

=2(-I)k!C
k

; 1)[~~ (_1)1+1 Ck
; 1)

+ (_I)k+1-} (2k; 1)]

=2(-I)k!C
k;1 )l~~ (_1)1+1 [C:__12 )+(2k;2)]

+ (_I)k + 1 -} (2k; 1 ) (

= 2(-I)kI(2k ; 1)[(_I)k (2:~12)+ (_I)k +1 -} ( 2k; 1)]
2k 1

= 2k - 1 - 1 = 2k - 1 .

This ends the proof of Theorem A.



300 RONG-QING JIA

3. THE MONOTONICITY OF !2k(q) FOR q E [1, 20]

Recall t = log q. Let

k vI + 1 k- levI + 1 k 1
Ii (t) '= t2k - 1 fl e fl )' fl -;-----=--=---,.----,--,
k' v=1 eVI -l v=1 eVI -l f;;Z v=1 (n+27Cj)2+(vt)2'

Then !2k(e t
) = 2k! (k - 1)lfk(t). Consider j£(t)/fk(t). We have

n(t) 00 1
r (t) = ~ t Uk,j(t)fkjt),

J k J=O

where
k

uk)t):= fl
v=l

(18)

(19)

for x E [0, 00) and c E [1, 5/4].

for n ~ 2 and c E [1, 5/4].

If we can show that fHt)/fk(t) ~° for t E [0,3], then !2k(q) ~° for
q E [1,20], because e3 > 20. For this it suffices to show fk,O(t) ~ 0, since
fk,it) ~h,o(t) (j= 1,2,... ) from (19). Let us first make the following obser­
vation:

PROPOSITION 1.

n2 2xex

n2+ (CX)2 ~ e2x - 1

Proof Each of the following inequalities is equivalent to Proposition 1:

e2x - 1 ~ (1 +c2x 2/n2) 2xex,

to 2
nx n/(n + I)! ~ (1 + c2x 2/n

2
) (~o xn/nl),

f 2
n
x

n
/(n + I)! ~ f:. [~+ c: ( ~ 2)' Jx

n
.

n=2 n=2 n. n n .

An induction argument on n shows, however, that

2n/( )' 1 c
2

1n + 1 .~, +2"" ( _ 2)'n. n n .

Therefore Proposition 1 is true.
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PROPOSITION 2.

2n2 n2 n2

n2+ (4x/3)2 ~ n2+ (5x/4)2 + n2+ (5x/3)2 .

Proof

2(n2+ 25x2/9)(n2+ 25x2/16)

= 2n4+ 1250n2x2/144 + 625x2/72
~ 2n4 + 1137n2x2/144 +625x2/81

= (n2+ 16x2/9)[(n2+ 25x2/9) + (n2+ 25x2/16»).

Multiplying the above inequality by n2/[(n2+ 196 x2)(n2+ i~ X2)
(n2+ 2i x2»), we obtain Proposition 2.

PROPOSITION 3.

for t ~ 0 and k ~ 3.

Proof We shall argue by induction on k. For k = 3, we have

Set x := 3t. Then Propositions 1 and 2 yield that

(
n2 2xex

)
f4,O(l) - f3,o(l) ~ n2+ (5x/4)2 - e2x - 1

(
n2 2(4Xe4XI3/3»)

+ n2+ (5x/3)2 - e2-4x/3 _ 1 ~ O.

Suppose now that k ~ 4. Then (k + l)/k ~ ~. We have

2n2 2ktekl 2(k + 1) te(k+ 1)/

fk+ I,O(t) - fk,O(t) = n2t[(k + 1) t) 2 e2kl _ 1 e2(k+ 1)/ - 1

(
n2 2ktekl )

= n2+[(k+l)t)2-22kl _l

(
n2 2(k+ l)te(k+l)l)

+ n2+ [(k+ l)tp - e2(k+1)1 -1 ~O,

according to Proposition 1. Thus Proposition 3 is proved.
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Consequently, hjt) ~ iJ.o(t) for all k ~ 3 and j ~ O. The remaining task
of this section is to elaborate the nonnegativity of f3,0(t). For this we need
some estimates.

PROPOSITION 4. Let h(x) = «xeXj(eX+ 1)) - !x)jx2. Then h'(x) ~ ofor
x~o.

Proof h(x) = (eX - l)j2x(eX+ 1) and

1 x(ex+l)eX-(eX-l)[(ex+l)+xeX] 1+2xex -e2x

h'(x)=T [x(eX+ IW = 2x2(eX+ 1)2 '

while

OCJ 2(2n - 1 -n) n=-2: , x~O
n=3 n.

PROPOSITION 5.

Proof

(1+~x +_1_ X2 ) (eX - I) -xex

2 12

for x ~ O.

OCJ xn + I OCJ I xn+ I OCJ I xn +2

= 2: -, - L -2-,+ L 12n!
n=2 n. n=1 n. n=1

for x ~ O.

Now we are in a position to prove that J;.o(t) ~ 0 for t E [0,0.3]. Write

(
tet tet t2 )

f (t) - 2 I +-- - --- ---;;----:;-
3,0 - et + I et _ I t 2 +n2

(
2te2t 2te2t (2t)2)+2 - -.,..--.

ell + 1 ell - 1 (2t)2 + n2

(
3te3t 3te3t (3t)2) 9t2

+ 1 + e3t + 1 - e3t _ 1 (3t)2 +n2 - n2+ 9t2.
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It follows from Proposition 4 that, for t E [0, 0.3],

tel/eel + 1) - t/2 ~ h(0.3) t2 ~ 0.248t2,

2te21/(e 21 + 1) - 2t/2 ~ h(0.6)(2t)2 ~ 0.242(2t)2,

3te 31/(e 31 + 1) - 3t/2 ~ h(0.9)(3t)2 ~ O.234(3t)2.

In connection with Proposition 5, we obtain

(
tel tel t

2
) ( 1 1) 2

2 1 +-1----1--- 2 2 ~ 2 0.248 --12-2' t
e+l e-l t+n n

~ 0.126t2,

303

(
2te2t 2te

2t
(2t)2) ( 1 1 ) 2

2 1 + 21 - 21 - (2)2 2 ~ 2 0.242 - -12 - 2' (2t)e +1 e -1 t +n n

~ 0.458t2,

3te 31 3te 31 (3t)2 ( 1 1 ) 2

1 + e31 + 1 - e'l _ 1 - (3t)2 +n2 ~ 0.234 -12- n2 (3t)

~ 0.444t2,

9t 2 9t 2

2 2~--2 ~-0.912t2.
n + 9t n

As a conclusion,f3,o(t) ~ (0.126 +0.458 +0.444 - 0.912) t2= 0.116t2. This
shows that

for t E [0,0.3].

The next case we are going to treat is that of t E [0.3,3]. Let

2n2 2n2 n2 - 9t2
vet) '- + +--~

.- t2+ n2 4t2+n2 n2+ 9t2'

4tel 8te21 6te 31
w(t):= 21 1 + 41 1 + 61 1 .e - e - e-

Thenf3,o(t)=v(t)-w(t). It is easily seen that v'(t)~O for tE [0, (0). We
claim that w'(t) ~ 0 (0 ~ t < (0), too. This is guaranteed by

PROPOSITION 6. Let g(x) := 2xeX /(e 2X
- 1). Then g'(x) ~ 0 for x ~ O.
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00 2nxn
l+x+xe 2X -e2X =(I+x)-(I_x) L-­

n=O n!

00 (n-2)2n-1
= )' , xn ~ 0 for x ~ 0.

::'3 n.

Accordingly,

f3,0(t) = vet) - wet) ~ v(b) - w(a) for t E [a, b] with 0 <a <b. (20)

To determine the positivity of;;.0 we wrote a Fortran program and found
that

v (nl~ol ) - w ( I~ ) ~ 0.001

Thus by (20) we assert that

for n = 30,31,...,299.

Therefore

[
n n + I J

for t E 100' ----wo ' n = 30, 31,..., 299.

299 [n n+ I J
for tE n~o 100'----WO = [0.3,3].

So far we have shown that .Dk(q) ~ 0 for q E [I, 20].

4. THE MONOTONICITY OF .Dk(q) FOR q E [20, 00)

Let

I
f(q):=(-I)k(2k-I)!qk[0,1, ...,2k-l]. k' (21)

q +q

Then

f(q) = (_l)kqk 2~1 (2k-l)(_1)'+1 11 k
1=0 I q + q

= (_I)k 2~1 (_1)1+1 (2k - 1 ) II_k
1=0 I 1 +q
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= k~1 (_I)k+I+1 (2k-I) qk-I
t:-O 1 1+qk 1

(
2k - 1) 1 2~ 1 k+1+1 ( 2k - 1) 1

+ (-1) k 2" + 1=1"+1 (-1) I 1 + ql-k·

It follows that

f'( )= ~I (_I)k+I+1 (2k-I) (k-l)qk-I-I
q t:-o I (1 + qk-I)2

2~1 k+1 (2k-I) (l-k)ql-k-I
+ '"-' (-1) I (1 +ql-k)2

l=k+1

= f (_1)1-1 (2k- 1). lql-I
{'::"I k-l (1 +ql)2

k-I (2k _ 1 ) lql-I
- (;1 (_1)1-1 k + I . (1 + ql)2

k-I [(2k-I) (2k-I)] lql-I
=(;1(_1)1-1 k-l - k+1 (I+ql)2

k k-I
+ (_I)k-I (11 qk)2 . (22)

Now we need the following propositions.

PROPOSITION 7.

[(
2k-I) (2k-I)] lql-I
k-l - k+l (1 +ql)2

decreases as I increases and q ~ 6.

Proof

(
2k-I) (2k-I) (2k-I)! k-l)
k -I - k + I = (k -I)! (k - 1 + I)! (1 - k + I

(2k-I)!
(k -l)! (k + I)! 2/. (23)

We want to show

(2k - I)! Iql-I
(k -I)! (k + I)! 21 (1 +ql)2

(2k-I)! 1 (/+I)ql
~ (k-I-I)!(k+I+I)! 2(1+ ) (I+ql+I)2

for q ~ 6. (24)
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It is easily seen that (24) is equivalent to

~(ql+l+I)2~ k-I ( 1)2
q ql + 1 ,;;-- k + I + 1 1 + T ;

however,

I (ql+l+I)2 q2l+2 + 2ql+l + 1
- - ~-21-1~-2
q ql + 1 - q(q21 + 2ql + 1) ,;;-- q q ,;;-- q ,

because

(q _ 2q l-l) q(q21 + 2ql + 1) = q2l+ 2 _ q2 _ 2q 2-1

~q2l+2 + 2ql+1 + 1.

Meanwhile

k - I (1 + -11 ) 2~ 4.
k + 1+1

Therefore (24) holds for q ~ 6, and Proposition 7 is proved.

PROPOSITION 8. For k ~ 2 and q ~ 6,

, (2k-I) 2 1 (2k-I) 4 2q
f(q)~ k-I k+I (1+q)2- k-2 k+2 (I+q2)2' (25)

In particular, f'(q) ~ 0 and

. (2k-I) 1
f(q)~J~~f(q)= k-I 2(2k-I)" (26)

Proof Suppose first k is even, k = 2m. Then (22) and (23) yield that

(
2k-I) 2 1 (2k+I) 4 2q

f'(q) = k - 1 k + 1 (1 + qf - k - 2 k + 2 (1 + q2)2

m-I [ (2k-I)! 2(2j-I) (2j_I)q2j -2

+ jJ;2 (k-2j+I)!(k+2j-2)! k+2j-I (I+q2j -I)2

(2k-I)! 2.2j 2jq2j-l ]

- (k - 2j)! (k + 2j - I)! k + 2j (1 + q2j )2

[
(k - 1) qk-2 kqk - 1

]

+ (2k - 2) (1 +qk-l)2 - (1 +qk)2 .
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By Proposition 7 all the terms under the summation sign are positive.
Moreover,

for q ~ 1,

and

for k ~ 2.

For odd k, the proof is similar. Thus (25) holds. Furthermore,

, ~ 2 (2k-l)! [k+ 2 4(1 + l/q)2 ]
f (q) 7 (1 + q)2 (k - 2)! (k + 2)! k - 1 - q(1 + l/q2)2

~ 2 (2k - 1)! [ ( 1 ) 2]
7 (1 + q)2 (k _ 2)! (k + 2)! 1 - 4 1 +6

~ 0 fer q ~ 6,

and

f(q) ~ lim f(q) = lim [( 2
k
k - 1 ) ~nk(q)]

q->rJJ q .... 00 - 1 2

(
2k-1) 1

- k - 1 2(2k - 1)'

PROPOSITION 9. Let

k-l vqv-l kqk-l
S(q) =4 L 2v 1 + 2 2k 1.

v=l q - q-

Then

for q ~ 1.

Proof We have

k-l 2v 2k
S(q)=4 " ~vq-IV+ll +2kq-lk+ll q .

~l q2V 1 q2k _ 1

640/37/4-2
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Note that

Hence
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for v~ 1 and q ~ 1.

PROPOSITION 10. Let

2k-l [1- 4(k-l) q ].
gk(q) = k + 1 k + 2 1 + q2

Then

k = 1,2,3,... , q ~ 12.

Proof

gk+l(q)-gk(q)= (k+l)(k~2)(k+3) [(k+3)-(3k-l)4 1:q2]

~ (k+l)(k~1)(k+3) [(k+3)-(3k-l)4 1~~22]
~ 0 for q ~ 12.

Now we are in a position to prove the monotonicity of Dk(q) for
q E [20, (0). From (16) and (21) we see that

k m + 1 k-I m + 1
Dk(q)=2kl (k-l)!/(2k-l)! Tl qm 1 Tl qm 1 f(q)·

m=1 q - m=1 q -

Hence

DHq) __ ( ~I vqV-1 kqk - I
) f'(q) _ _ f'(q)

Dk(q) - 4:=-1 q2v _ 1 + 2 q2k - 1 + f(q) - S(q) + f(q) .

By Proposition 9 we have

1 4q4 1 4 . 204 4.45
S(q) ~ q2 (q2 _ 1)(q _ 1)2 ~ q2 (202 _ 1)(20 _ 1)2 ~7 for q ~ 20.
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Moreover, Propositions 8 and 10 tell us that

f'(q) 1 4(2k-l) [ 4(k-l) q] 4
f(q) ~ (1 +q)2 k+ 1 1- k+ 2 1 +q2 = (1 +q)2 gk(q)

4 4 7 ( 2q )
~ (1 +q)2 g4(q) = (1 +q)2 5 1- 1 +q2

1 28 (1 - l/q)2 1

= q2 -5- (1 + l/q)2 1+ l/q2

~ -.!..- 28 (1 - (1/20»2 1

:7 q2 5 (1 + (1/20»2 1 + 1/202

4.55
~ -2- for q ~ 20 and k ~ 4.

q

Therefore

Q~(q) = f'(q) _ S(q) ~ 4.55 _ 4.45 = 0.1 > 0
Qk(q) f(q) q2 q2 q2

for k ~ 4 and q ~ 20.

It remains to check the case k = 3. For this we shall make a straightforward
computation:

Thus

for q ~ 1.

This completes the proof of Theorem 1.
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