L_{∞}-Upper Bound of L_{2}-Projections onto Splines at a Geometric Mesh

Rong-Qing Jia
Department of Mathematics, University of Wisconsin, Madison, Wisconsin 53706, U.S.A.
Communicated by Carl de Boor

Received March 17, 1982

For an integer $k \geqslant 1$ and a geometric mesh $\left(q^{i}\right)_{-\infty}^{\infty}$ with $q \in(0, \infty)$, let

$$
\begin{aligned}
& M_{l, k}(x):=k\left[q^{l}, \ldots, q^{l+k}\right](\cdot-x)_{+}^{k-1}, \\
& N_{l, k}(x):=\left(q^{i+k}-q^{l}\right) M_{l, k}(x) / k
\end{aligned}
$$

and let $A_{k}(q)$ be the Gram matrix $\left(\int M_{i, k} N_{j, k}\right)_{i, j \in Z}$. It is known that $\left\|A_{k}(q)^{-1}\right\|_{\infty}$ is bounded independently of q. In this paper it is shown that $\left\|A_{k}(q)^{-1}\right\|_{\infty}$ is strictly decreasing for q in $[1, \infty)$. In particular, the sharp upper bound and lower bound for $A_{k}(q)^{-1}$ are obtained:

$$
2 k-1 \leqslant\left\|A_{k}(q)^{-1}\right\|_{\infty} \leqslant\left(\frac{\pi}{2}\right)^{2 k}\left\{\sum_{j \in Z}(1+2 j)^{-2 k}\right\}^{-1}
$$

for all $q \in(0, \infty)$.

1. Introduction

Let $\mathrm{x}:=\left(x_{i}\right)_{-\infty}^{\infty}$ be a strictly increasing biinfinite sequence with $x_{ \pm \infty}:=$ $\lim _{i \rightarrow \pm \infty} x_{i}$ and $I:=\left(x_{-\infty}, x_{+\infty}\right)$. Further, let

$$
\begin{aligned}
S:=m S_{k, x}(I):= & \left\{f \in C^{k-2}(I) \cap L_{\infty}(I) ;\right. \\
& \left.\left.f\right|_{\left(x_{i}, x_{i+1}\right)} \text { is a polynomial of degree }<k\right\}
\end{aligned}
$$

be the normed linear space of bounded polynomial splines of order k with breakpoint sequence x and norm $\|f\|:=\sup _{x \in I}|f(x)|$. We shall be concerned with P_{S}, the orthogonal projector onto S with respect to the ordinary inner product

$$
(f, g):=\int_{I} f(x) g(x) d x
$$

[^0]but restricted to $L_{\infty}(I)$. We want to bound its norm
$$
\left\|P_{S}\right\|_{\infty}:=\sup _{f \in L_{\infty}(I)}\left\|P_{S} f\right\| /\|f\|_{\infty}
$$

In 1973, de Boor raised the following
Conjecture [1].

$$
\sup _{\mathbf{x}}\left\|P_{s}\right\|_{\infty} \leqslant \text { const }_{k}<\infty
$$

This conjecture has been verified for $k=1,2,3,4$ (see de Boor [3] and the references cited there). De Boor [2] also obtained a bound of P_{S} in terms of a global mesh ratio. In general, however, this conjecture seems hard to solve. For a geometric mesh x, Höllig [8] recently proved the boundedness of P_{s}. Later on, Feng and Kozak [6] reproved this result. Before recalling some results of theirs, we need to introduce some notations. For the mesh $\mathbf{x}=\left(x_{i}\right)_{-\infty}^{\infty}$, let

$$
\begin{aligned}
M_{i, k}(x) & :=k\left[x_{i}, \ldots, x_{i+k}\right](\cdot-x)_{+}^{k-1} \\
N_{i, k}(x) & :=\left(\left[x_{i+1}, \ldots, x_{i+k}\right]-\left[x_{i}, \ldots, x_{i+k-1}\right]\right)(\cdot-x)_{+}^{k-1} \\
& =\left(x_{i+k}-x_{i}\right) M_{i, k}(x) / k .
\end{aligned}
$$

Set

$$
A_{k}(i, j):=\int M_{i, k} N_{j, k} \quad \text { for } \quad i, j \in \mathbb{Z}
$$

Let $A_{k} \in \mathbb{R}^{\mathbb{Z} \times \mathbb{Z}}$ be the biinfinite matrix given by the rule

$$
(i, j) \rightarrow A_{k}(i, j) \quad \text { for } \quad(i, j) \in \mathbb{Z} \times \mathbb{Z}
$$

It was shown by de Boor [1] that

$$
D_{k}^{-2}\left\|A_{k}^{-1}\right\|_{\infty} \leqslant\left\|P_{s}\right\|_{\infty} \leqslant\left\|A_{k}^{-1}\right\|_{\infty},
$$

where D_{k} is a constant depending only on k. Thus bounding P_{S} is equivalent to bounding A_{k}^{-1}.

Let us restrict ourselves now to a particular case where \mathbf{x} is a geometric mesh: $\mathbf{x}:=\left(q^{i}\right)_{-\infty}^{\infty}$ for some $q \in[1, \infty)$ (note that the case $q \in(0,1]$ is symmetric to the case $q \in[1, \infty)$; see $[6,8])$. Spline interpolation at a geometric mesh was first investigated by Micchelli [9], who based his argument on the properties of the so-called generalized Euler-Frobenius polynomials. Later on, Feng and Kozak [6] developed such a consideration. Earlier, and in a different way, Höllig [8] made a more precise investigation into the boundedness of L_{2}-projections onto splines on a geometric mesh. In particular, he got the following elegant result (see [8, Theorem 5]):

Theorem A. For a geometric mesh $\mathbf{x}:=\left(q^{i}\right)_{-\infty}^{\infty}$ with $q \in(0, \infty)$, let $A_{k}(q)$ be the biinfinite matrix $\left(\int M_{i, k} N_{j, k}\right)_{i, j \in Z}$. Then

$$
\begin{equation*}
\left\|A_{k}(q)^{-1}\right\|_{\infty}=\left|\Omega_{k}(q)\right|^{-1}, \tag{1}
\end{equation*}
$$

where

$$
\begin{align*}
\Omega_{k}(q):= & 2 k!(k-1)!t^{2 k-1} \prod_{v=1}^{k} \frac{q^{v}+1}{q^{v}-1} \prod_{v=1}^{k-1} \frac{q^{v}+1}{q^{v}-1} \\
& \times \sum_{j \in Z} \prod_{v=1}^{k} \frac{1}{[\pi(1+2 j)]^{2}+(v t)^{2}} \tag{2}
\end{align*}
$$

with $t:=\log q$. Moreover,

$$
\begin{align*}
& \lim _{q \rightarrow 1} \Omega_{k}(q)=\left(\frac{2}{\pi}\right)^{2 k}\left\{\sum_{j \in \mathbf{Z}}(1+2 j)^{-2 k}\right\} \tag{3}\\
& \lim _{q \rightarrow \infty} \Omega_{k}(q)=\frac{1}{2 k-1} . \tag{4}
\end{align*}
$$

Based on numerical evidence, de Boor raised the following
Conjecture. $\quad \Omega_{k}(q)$ is a monotone increasing function on $[1, \infty)$.
This conjecture was verified for $k \leqslant q$ by Feng and Kozak [7]. They also showed that $\Omega_{k}(q) \leqslant 1 /(2 k-1)$ in the same paper.
The purpose of this paper is to confirm the above conjecture. Thus we have

Theorem 1. $\Omega_{k}(q)$ is a monotone increasing function on $[1, \infty)$. In particular,

$$
\begin{equation*}
2 k-1 \leqslant\left\|A_{k}(q)^{-1}\right\|_{\infty} \leqslant\left(\frac{\pi}{2}\right)^{2 k}\left\{\sum_{j \in \mathbb{Z}}(1+2 j)^{-2 k}\right\}^{-1} \tag{5}
\end{equation*}
$$

Note that $\Omega_{1}(q) \equiv 1$ and that $\Omega_{2}(q) \equiv \frac{1}{3}$ in terms of a straightforward calculation. Hence we can restrict ourselves to the case $k \geqslant 3$ from now on.

In Section 2, we shall give an alternative proof of Theorem A. Sections 3 and 4 will be devoted to proving the monotonicity of $\Omega_{k}(q)$ for $q \in[1,20]$ and $q \in[20, \infty)$, respectively.

2. The Bound for $A_{k}(q)^{-1}$

As before, $\mathbf{x}=\left(q^{i}\right)_{-\infty}^{\infty}$ is a geometric mesh with $q \in(1, \infty)$ and $t=\log q$. Consider

$$
\phi_{0}(x):=[0,1, \ldots,(2 k-1)]_{z} x^{z} /\left(q^{z}+q^{k}\right) \quad \text { for } \quad x \in[1, q] .
$$

It is easy to verify that

$$
\begin{align*}
q^{l} \phi_{0}^{(l)}(q)+q^{k} \phi_{0}^{(l)}(1) & =[0,1, \ldots,(2 k-1)]_{z}\{z(z-1) \cdots(z-l+1)\} \\
& =0, \quad \text { for } \quad l=1, \ldots, 2 k-2, \\
& =1, \quad \text { for } \quad l=2 k-1 \tag{6}
\end{align*}
$$

Since ϕ_{0} is a polynomial of degree $2 k-1, \phi_{0}^{(2 k-1)}$ is constant in $[1, q]$. Hence (6) yields that

$$
\begin{equation*}
\phi_{0}^{(2 k-1)}(x)=1 /\left(q^{k}+q^{2 k-1}\right) \quad \text { for } \quad x \in[1, q] . \tag{7}
\end{equation*}
$$

Now we extend the domain of ϕ_{0} to $(0, \infty)$ as

$$
\phi(x):=\left(-q^{k}\right)^{m} \phi_{0}\left(q^{-m} x\right) \quad \text { for } \quad q^{m} \leqslant x \leqslant q^{m+1}, \quad m \in \mathbb{Z}
$$

From (6) we assert that $\phi \in S_{2 k, x}$, and that

$$
\begin{equation*}
\phi\left(q^{m}\right)=\left(-q^{k}\right)^{m} \phi_{0}(1), \quad m \in \mathbb{Z} \tag{8}
\end{equation*}
$$

It follows that

$$
\begin{aligned}
{\left[x_{0}, x_{1}, \ldots, x_{m-1}, x_{m}\right] \phi } & =\frac{\left[x_{1}, \ldots, x_{m}\right] \phi-\left[x_{0}, \ldots, x_{m-1}\right] \phi}{x_{m}-x_{0}} \\
& =\frac{-q^{k-m+1}\left[x_{0}, \ldots, x_{m-1}\right] \phi-\left[x_{0}, \ldots, x_{m-1}\right] \phi}{q^{m}-1} \\
& =-\frac{q^{k-m+1}+1}{q^{m}-1}\left[x_{0}, \ldots, x_{m-1}\right] \phi .
\end{aligned}
$$

By induction on m, we can obtain

$$
\begin{align*}
{\left[x_{0}, x_{1}, \ldots, x_{k}\right] \phi } & =(-1)^{k}\left(\prod_{m=1}^{k} \frac{q^{k-m+1}+1}{q^{m}-1}\right) \phi_{0}(1) \\
& =(-1)^{k}\left(\prod_{m=1}^{k} \frac{q^{m}+1}{q^{m}-1}\right) \phi_{0}(1) \tag{9}
\end{align*}
$$

From (8) we deduce that

$$
\begin{equation*}
\left[x_{i}, \ldots, x_{i+k}\right] \phi=(-1)^{i}\left[x_{0}, \ldots, x_{k}\right] \phi . \tag{10}
\end{equation*}
$$

By Peano's theorem (see [4])

$$
\left[x_{i}, \ldots, x_{i+k}\right] \phi=\int M_{i, k}(x) \phi^{(k)}(x) / k!d x .
$$

Now we get

$$
\begin{equation*}
\int M_{i, k}(x) \phi^{(k)}(x) / k!d x=(-1)^{i}(-1)^{k}\left(\prod_{m=1}^{k} \frac{q^{m}+1}{q^{m}-1}\right) \phi_{0}(1) . \tag{11}
\end{equation*}
$$

Obviously, $\phi^{(k)} / k!\in S_{k, x}$; hence $\phi^{(k)} / k!$ may be expanded in a B-spline series

$$
\phi^{(k)} / k!=\sum \alpha_{j} N_{j, k}
$$

however, $\phi^{(k)}(q x)=-\phi^{(k)}(x)$. Thus

$$
\sum \alpha_{j} N_{j, k}(x)=-\sum \alpha_{j} N_{j, k}(q x)=-\sum \alpha_{j} N_{j-1, k}(x)=-\sum \alpha_{j+1} N_{j, k}(x) .
$$

By the uniqueness of B-spline expansion we assert that

$$
\alpha_{j+1}=-\alpha_{j}, \quad j \in \mathbb{Z} .
$$

Thus we can write

$$
\begin{equation*}
\phi^{(k)} / k!=C \sum(-1)^{j} N_{j, k}, \tag{12}
\end{equation*}
$$

where C is a constant to be determined. Now (11) and (12) together give

$$
\begin{equation*}
\sum_{j \in \mathbb{Z}}(-1)^{j} \int M_{i, k}(x) N_{j, k}(x) d x=(-1)^{i} C^{-1}(-1)^{k}\left(\prod_{m=1}^{k} \frac{q^{m}+1}{q^{m}-1}\right) \phi_{0}(1) \tag{13}
\end{equation*}
$$

Let

$$
\begin{equation*}
\Omega_{k}(q):=C^{-1}(-1)^{k}\left(\prod_{m=1}^{k} \frac{q^{m}+1}{q^{m}-1}\right) \phi_{0}(1) . \tag{14}
\end{equation*}
$$

Then (see de Boor et al. [5])

$$
\left\|A_{k}(q)^{-1}\right\|_{\infty}=\left|\Omega_{k}(q)\right|^{-1} .
$$

It remains to determine C. Differentiate (12) $k-1$ times,

$$
\phi^{(2 k-1)} / k!=C\left(\sum(-1)^{j} N_{j, k}\right)^{(k-1)} .
$$

One the one hand,

$$
\phi^{(2 k-1)}(x) / k!=\frac{1}{k!} \frac{1}{q^{k}+q^{2 k-1}} \quad \text { for } \quad x \in(1, q)
$$

On the other hand (see [4]),

$$
\begin{aligned}
\left(\sum\right. & \left.(-1)^{j} N_{j, k}\right)^{(k-1)} \\
& =\frac{2(k-1)}{q^{k-1}-1} \frac{(q+1)(k-2)}{q^{k-2}-1} \cdots \frac{q^{k-2}+1}{q-1} \sum_{j \in Z}(-1)^{j}\left(q^{k-1}\right)^{-j} N_{j, 1} \\
& =2(k-1)!\frac{1}{q^{k-1}+1} \prod_{m=1}^{k-1} \frac{q^{m}+1}{q^{m}-1} \sum_{j \in Z}(-1)^{j}\left(q^{k-1}\right)^{-j} N_{j, 1}
\end{aligned}
$$

Thus, for $x \in(1, q)$

$$
\left(\vdots(-1)^{j} N_{j, k}\right)^{(k-1)}(x)=2(k-1)!\frac{1}{q^{k-1}+1} \prod_{m=1}^{k-1} \frac{q^{m}+1}{q^{m}-1}
$$

From the above calculation we get

$$
\begin{align*}
C^{-1} & =k!\left(q^{k}+q^{2 k-1}\right) 2(k-1)!\frac{1}{q^{k-1}+1} \prod_{m=1}^{k-1} \frac{q^{m}+1}{q^{m}-1} \\
& =2 k!(k-1)!q^{k} \prod_{m=1}^{k-1} \frac{q^{m}+1}{q^{m}-1} \tag{15}
\end{align*}
$$

Finally, (14) and (15) yield that

$$
\begin{align*}
\Omega_{k}(q)= & (-1)^{k} 2 k!(k-1)!\prod_{m=1}^{k} \frac{q^{m}+1}{q^{m}-1} \prod_{m=1}^{k-1} \frac{q^{m}+1}{q^{m}-1} q^{k} \phi_{0}(1) \\
= & (-1)^{k} 2 k!(k-1)!\prod_{m=1}^{k} \frac{q^{m}+1}{q^{m}-1} \prod_{m=1}^{k-1} \frac{q^{m}+1}{q^{m}-1} \\
& \times q^{k}[0,1, \ldots, 2 k-1] \frac{1}{q+q^{k}} \tag{16}
\end{align*}
$$

We follow the procedure in [9] and use a well-known formula for the divided difference to get

$$
\begin{align*}
& (-1)^{k} q^{k}[0,1, \ldots, 2 k-1] \frac{1}{q^{\dot{*}}+q^{k}} \\
& \quad=\frac{(-1)^{k} q^{k}}{2 \pi i}\left[\int_{C_{k}}-\sum_{j=0}^{2 k-1} \int_{C_{r_{j}}}\left(\prod_{m=0}^{2 k-1}(z-m)\left(e^{z \log q}+q^{k}\right)\right)^{-1} d z\right. \tag{17}
\end{align*}
$$

where C_{R} and $C_{r_{j}}$ stand for positively oriented circles with centers at 0 and j and radius R and r_{j}, where R is sufficiently large and r_{j} sufficiently small, $j=0,1, \ldots, 2 k-1$.

Making $R \rightarrow \infty, r_{j} \rightarrow 0(j=0,1, \ldots, 2 k-1)$ in (17) and using the residue theorem we get

$$
\begin{aligned}
(-1)^{k} & q^{k}[0,1, \ldots, 2 k-1] \frac{1}{q^{k}+q^{k}} \\
& =(-1)^{k} q^{k}(-1) \sum_{j \in Z} \operatorname{Res}_{z=i(\pi+2 \pi j) / t+k}\left(\prod_{v=0}^{2 k-1}(z-v)\left(e^{z \log g}+q^{k}\right)\right)^{-1} \\
& =(-1)^{k} \sum_{j \in Z}\left(t \prod_{v=0}^{2 k-1}\left[\frac{i(\pi+2 \pi j)}{t}-v+k\right]\right)^{-1} \\
& =\sum_{j \in Z} t^{2 k-1} /\left(\prod_{v=0}^{2 k-1}[\pi+2 \pi j-i(k-v) t]\right) \\
& =t^{2 k-1} \sum_{j \in Z} \prod_{v=1}^{k} \frac{1}{(\pi+2 \pi j)^{2}+(v t)^{2}}
\end{aligned}
$$

Thus (2) is proved by substituting the above equality into (16). Then it is straightforward to verify (3). As to (4), we have

$$
\begin{aligned}
\lim _{q \rightarrow \infty} \Omega_{k}(q)= & (-1)^{k} 2 k!(k-1)!/(2 k-1)!\lim _{q \rightarrow \infty} \sum_{l=0}^{2 k-1}(-1)^{l+1}\binom{2 k-1}{l} \frac{q^{k}}{q^{l}+q^{k}} \\
= & 2(-1)^{k} /\binom{2 k-1}{k}\left[\sum_{l=0}^{k-1}(-1)^{l+1}\binom{2 k-1}{k}\right. \\
& \left.+(-1)^{k+1} \frac{1}{2}\binom{2 k-1}{k}\right] \\
= & 2(-1)^{k} /\binom{2 k-1}{k}\left\{\sum_{l=0}^{k-1}(-1)^{i+1}\left[\binom{2 k-2}{l-1}+\binom{2 k-2}{l}\right]\right. \\
& \left.+(-1)^{k+1} \frac{1}{2}\binom{2 k-1}{k}\right\} \\
= & 2(-1)^{k} /\binom{2 k-1}{k}\left[(-1)^{k}\binom{2 k-2}{k-1}+(-1)^{k+1} \frac{1}{2}\binom{2 k-1}{k}\right] \\
= & \frac{2 k}{2 k-1}-1=\frac{1}{2 k-1} .
\end{aligned}
$$

This ends the proof of Theorem A.
3. The Monotonicity of $\Omega_{k}(q)$ for $q \in[1,20]$

Recall $t=\log q$. Let

$$
f_{k}(t):=t^{2 k-1} \prod_{v=1}^{k} \frac{e^{\nu t}+1}{e^{\nu t}-1} \prod_{v=1}^{k-1} \frac{e^{\nu t}+1}{e^{\nu t}-1} \sum_{j \in \mathbb{Z}} \prod_{v=1}^{k} \frac{1}{(\pi+2 \pi j)^{2}+(v t)^{2}}
$$

Then $\Omega_{k}\left(e^{t}\right)=2 k!(k-1)!f_{k}(t)$. Consider $f_{k}^{\prime}(t) / f_{k}(t)$. We have

$$
\begin{equation*}
\frac{f_{k}^{\prime}(t)}{f_{k}(t)}=\sum_{j=0}^{\infty} \frac{1}{t} u_{k, j}(t) f_{k, j}(t) \tag{18}
\end{equation*}
$$

where

$$
\begin{align*}
u_{k, j}(t):= & \prod_{v=1}^{k} \frac{1}{(\pi+2 \pi j)^{2}+(v t)^{2}} /\left\{\sum_{t=0}^{\infty} \prod_{v=1}^{k} \frac{1}{(\pi+2 \pi l)^{2}+(v t)^{2}}\right\} \\
f_{k, j}(t):= & 2 k-1+\left(\sum_{v=1}^{k-1}+\sum_{v=1}^{k}\right)\left(\frac{v t e^{v t}}{e^{v t}+1}-\frac{v t e^{\nu t}}{e^{\nu t}-1}\right) \\
& -\sum_{v=1}^{k} \frac{2(v t)^{2}}{(\pi+2 \pi j)^{2}+(v t)^{2}} \tag{19}
\end{align*}
$$

If we can show that $f_{k}^{\prime}(t) / f_{k}(t) \geqslant 0$ for $t \in[0,3]$, then $\Omega_{k}^{\prime}(q) \geqslant 0$ for $q \in[1,20]$, because $e^{3}>20$. For this it suffices to show $f_{k, 0}(t) \geqslant 0$, since $f_{k, j}(t) \geqslant f_{k, 0}(t)(j=1,2, \ldots)$ from (19). Let us first make the following observation:

Proposition 1.

$$
\frac{\pi^{2}}{\pi^{2}+(c x)^{2}} \geqslant \frac{2 x e^{x}}{e^{2 x}-1} \quad \text { for } \quad x \in[0, \infty) \quad \text { and } \quad c \in[1,5 / 4]
$$

Proof. Each of the following inequalities is equivalent to Proposition 1:

$$
\begin{gathered}
e^{2 x}-1 \geqslant\left(1+c^{2} x^{2} / \pi^{2}\right) 2 x e^{x} \\
\sum_{n=0}^{\infty} 2^{n} x^{n} /(n+1)!\geqslant\left(1+c^{2} x^{2} / \pi^{2}\right)\left(\sum_{n=0}^{\infty} x^{n} / n!\right), \\
\sum_{n=2}^{\infty} 2^{n} x^{n} /(n+1)!\geqslant \sum_{n=2}^{\infty}\left[\frac{1}{n!}+\frac{c^{2}}{\pi^{2}} \frac{1}{(n-2)!}\right] x^{n} .
\end{gathered}
$$

An induction argument on n shows, however, that

$$
2^{n} /(n+1)!\geqslant \frac{1}{n!}+\frac{c^{2}}{\pi^{2}} \frac{1}{(n-2)!} \quad \text { for } \quad n \geqslant 2 \quad \text { and } \quad c \in[1,5 / 4]
$$

Therefore Proposition 1 is true.

Proposition 2.

$$
\frac{2 \pi^{2}}{\pi^{2}+(4 x / 3)^{2}} \geqslant \frac{\pi^{2}}{\pi^{2}+(5 x / 4)^{2}}+\frac{\pi^{2}}{\pi^{2}+(5 x / 3)^{2}}
$$

Proof.

$$
\begin{aligned}
2\left(\pi^{2}\right. & \left.+25 x^{2} / 9\right)\left(\pi^{2}+25 x^{2} / 16\right) \\
& =2 \pi^{4}+1250 \pi^{2} x^{2} / 144+625 x^{2} / 72 \\
& \geqslant 2 \pi^{4}+1137 \pi^{2} x^{2} / 144+625 x^{2} / 81 \\
& =\left(\pi^{2}+16 x^{2} / 9\right)\left[\left(\pi^{2}+25 x^{2} / 9\right)+\left(\pi^{2}+25 x^{2} / 16\right)\right]
\end{aligned}
$$

Multiplying the above inequality by $\pi^{2} /\left[\left(\pi^{2}+\frac{16}{9} x^{2}\right)\left(\pi^{2}+\frac{25}{16} x^{2}\right)\right.$ $\left(\pi^{2}+\frac{25}{9} x^{2}\right)$, we obtain Proposition 2.

Proposition 3.

$$
f_{k+1,0}(t) \geqslant f_{k, 0}(t) \quad \text { for } \quad t \geqslant 0 \quad \text { and } \quad k \geqslant 3 .
$$

Proof. We shall argue by induction on k. For $k=3$, we have

$$
f_{4,0}(t)-f_{3,0}(t)=\frac{2 \pi^{2}}{\pi^{2}+(4 t)^{2}}-\frac{2 \cdot 3 t e^{3 t}}{e^{2 \cdot 3 t}-1}-\frac{2 \cdot 4 t e^{4 t}}{e^{2 \cdot 4 t}-1}
$$

Set $x:=3 t$. Then Propositions 1 and 2 yield that

$$
\begin{aligned}
f_{4,0}(t)-f_{3,0}(t) \geqslant & \left(\frac{\pi^{2}}{\pi^{2}+(5 x / 4)^{2}}-\frac{2 x e^{x}}{e^{2 x}-1}\right) \\
& +\left(\frac{\pi^{2}}{\pi^{2}+(5 x / 3)^{2}}-\frac{2\left(4 x e^{4 x / 3} / 3\right)}{e^{2 \cdot 4 x / 3}-1}\right) \geqslant 0 .
\end{aligned}
$$

Suppose now that $k \geqslant 4$. Then $(k+1) / k \leqslant \frac{s}{4}$. We have

$$
\begin{aligned}
f_{k+1,0}(t)-f_{k, 0}(t)= & \frac{2 \pi^{2}}{\pi^{2} t[(k+1) t]^{2}}-\frac{2 k t e^{k t}}{e^{2 k t}-1}-\frac{2(k+1) t e^{(k+1) t}}{e^{2(k+1) t}-1} \\
= & \left(\frac{\pi^{2}}{\pi^{2}+[(k+1) t]^{2}}-\frac{2 k t e^{k t}}{2^{2 k t}-1}\right) \\
& +\left(\frac{\pi^{2}}{\pi^{2}+[(k+1) t]^{2}}-\frac{2(k+1) t e^{(k+1) t}}{e^{2(k+1) t}-1}\right) \geqslant 0
\end{aligned}
$$

according to Proposition 1. Thus Proposition 3 is proved.

Consequently, $f_{k, j}(t) \geqslant f_{3,0}(t)$ for all $k \geqslant 3$ and $j \geqslant 0$. The remaining task of this section is to elaborate the nonnegativity of $f_{3,0}(t)$. For this we need some estimates.

PROPOSITION 4. Let $h(x)=\left(\left(x e^{x} /\left(e^{x}+1\right)\right)-\frac{1}{2} x\right) / x^{2}$. Then $h^{\prime}(x) \leqslant 0$ for $x \geqslant 0$.

Proof. $h(x)=\left(e^{x}-1\right) / 2 x\left(e^{x}+1\right)$ and

$$
h^{\prime}(x)=\frac{1}{2} \frac{x\left(e^{x}+1\right) e^{x}-\left(e^{x}-1\right)\left[\left(e^{x}+1\right)+x e^{x}\right]}{\left[x\left(e^{x}+1\right)\right]^{2}}=\frac{1+2 x e^{x}-e^{2 x}}{2 x^{2}\left(e^{x}+1\right)^{2}}
$$

while

$$
\begin{aligned}
1+2 x e^{x}-e^{2 x} & =1+2 x \sum_{n=0}^{\infty} \frac{x^{n}}{n!}-\sum_{n=0}^{\infty} \frac{2^{n} x^{n}}{n!} \\
& =-\sum_{n=3}^{\infty} \frac{2\left(2^{n-1}-n\right)}{n!} x^{n} \leqslant 0 \quad \text { for } \quad x \geqslant 0
\end{aligned}
$$

Proposition 5.

$$
-x e^{x} /\left(e^{x}-1\right) \geqslant-1-\frac{1}{2} x-\frac{1}{12} x^{2}
$$

Proof.

$$
\begin{aligned}
(1+ & \left.\frac{1}{2} x+\frac{1}{12} x^{2}\right)\left(e^{x}-1\right)-x e^{x} \\
& =\sum_{n=2}^{\infty} \frac{x^{n+1}}{n!}-\sum_{n=1}^{\infty} \frac{1}{2} \frac{x^{n+1}}{n!}+\sum_{n=1}^{\infty} \frac{1}{12} \frac{x^{n+2}}{n!} \\
& =\sum_{n=5}^{\infty} \frac{1}{n!} \frac{n^{2}-7 n+12}{12} x^{n} \geqslant 0 \quad \text { for } \quad x \geqslant 0 .
\end{aligned}
$$

Now we are in a position to prove that $f_{3,0}(t) \geqslant 0$ for $t \in[0,0.3]$. Write

$$
\begin{aligned}
f_{3,0}(t)= & 2\left(1+\frac{t e^{t}}{e^{t}+1}-\frac{t e^{t}}{e^{t}-1}-\frac{t^{2}}{t^{2}+\pi^{2}}\right) \\
& +2\left(\frac{2 t e^{2 t}}{e^{2 t}+1}-\frac{2 t e^{2 t}}{e^{2 t}-1}-\frac{(2 t)^{2}}{(2 t)^{2}+\pi^{2}}\right) \\
& +\left(1+\frac{3 t e^{3 t}}{e^{3 t}+1}-\frac{3 t e^{3 t}}{e^{3 t}-1}-\frac{(3 t)^{2}}{(3 t)^{2}+\pi^{2}}\right)-\frac{9 t^{2}}{\pi^{2}+9 t^{2}}
\end{aligned}
$$

It follows from Proposition 4 that, for $t \in[0,0.3]$,

$$
\begin{gathered}
t e^{t} /\left(e^{t}+1\right)-t / 2 \geqslant h(0.3) t^{2} \geqslant 0.248 t^{2} \\
2 t e^{2 t} /\left(e^{2 t}+1\right)-2 t / 2 \geqslant h(0.6)(2 t)^{2} \geqslant 0.242(2 t)^{2} \\
3 t e^{3 t} /\left(e^{3 t}+1\right)-3 t / 2 \geqslant h(0.9)(3 t)^{2} \geqslant 0.234(3 t)^{2}
\end{gathered}
$$

In connection with Proposition 5, we obtain

$$
\begin{aligned}
2\left(1+\frac{t e^{t}}{e^{t}+1}-\frac{t e^{t}}{e^{t}-1}-\frac{t^{2}}{t^{2}+\pi^{2}}\right) & \geqslant 2\left(0.248-\frac{1}{12}-\frac{1}{\pi^{2}}\right) t^{2} \\
& \geqslant 0.126 t^{2}, \\
2\left(1+\frac{2 t e^{2 t}}{e^{2 t}+1}-\frac{2 t e^{2 t}}{e^{2 t}-1}-\frac{(2 t)^{2}}{(2 t)^{2}+\pi^{2}}\right) & \geqslant 2\left(0.242-\frac{1}{12}-\frac{1}{\pi^{2}}\right)(2 t)^{2} \\
& \geqslant 0.458 t^{2}, \\
1+\frac{3 t e^{3 t}}{e^{3 t}+1}-\frac{3 t e^{3 t}}{e^{2 t}-1}-\frac{(3 t)^{2}}{(3 t)^{2}+\pi^{2}} & \geqslant\left(0.234-\frac{1}{12}-\frac{1}{\pi^{2}}\right)(3 t)^{2} \\
& \geqslant 0.444 t^{2} \\
-\frac{9 t^{2}}{\pi^{2}+9 t^{2}} & \geqslant-\frac{9 t^{2}}{\pi^{2}} \geqslant-0.912 t^{2}
\end{aligned}
$$

As a conclusion, $f_{3,0}(t) \geqslant(0.126+0.458+0.444-0.912) t^{2}=0.116 t^{2}$. This shows that

$$
f_{k}^{\prime}(t) \geqslant 0 \quad \text { for } \quad t \in[0,0.3]
$$

The next case we are going to treat is that of $t \in[0.3,3]$. Let

$$
\begin{aligned}
& v(t):=\frac{2 \pi^{2}}{t^{2}+\pi^{2}}+\frac{2 \pi^{2}}{4 t^{2}+\pi^{2}}+\frac{\pi^{2}-9 t^{2}}{\pi^{2}+9 t^{2}} \\
& w(t):=\frac{4 t e^{t}}{e^{2 t}-1}+\frac{8 t e^{2 t}}{e^{4 t}-1}+\frac{6 t e^{3 t}}{e^{6 t}-1}
\end{aligned}
$$

Then $f_{3,0}(t)=v(t)-w(t)$. It is easily seen that $v^{\prime}(t) \leqslant 0$ for $t \in[0, \infty)$. We claim that $w^{\prime}(t) \leqslant 0(0 \leqslant t<\infty)$, too. This is guaranteed by

Proposition 6. Let $g(x):=2 x e^{x} /\left(e^{2 x}-1\right)$. Then $g^{\prime}(x) \leqslant 0$ for $x \geqslant 0$.

$$
\begin{aligned}
& \text { Proof. } g^{\prime}(x)=-\left(2 e^{x} /\left(e^{2 x}-1\right)^{2}\right)\left(1+x+x e^{2 x}-e^{2 x}\right) \text {, while } \\
& 1+x+x e^{2 x}-e^{2 x}=(1+x)-(1-x) \sum_{n=0}^{\infty} \frac{2^{n} x^{n}}{n!} \\
& =\sum_{n=3}^{\infty} \frac{(n-2) 2^{n-1}}{n!} x^{n} \geqslant 0 \quad \text { for } \quad x \geqslant 0 \text {. }
\end{aligned}
$$

Accordingly,

$$
\begin{equation*}
f_{3,0}(t)=v(t)-w(t) \geqslant v(b)-w(a) \quad \text { for } t \in[a, b] \text { with } 0<a<b \tag{20}
\end{equation*}
$$

To determine the positivity of $f_{3,0}$ we wrote a Fortran program and found that

$$
v\left(\frac{n+1}{100}\right)-w\left(\frac{n}{100}\right) \geqslant 0.001 \quad \text { for } \quad n=30,31, \ldots, 299
$$

Thus by (20) we assert that

$$
f_{3.0}(t)>0 \quad \text { for } \quad t \in\left[\frac{n}{100}, \frac{n+1}{100}\right], \quad n=30,31, \ldots, 299
$$

Therefore

$$
f_{3,0}(t)>0 \quad \text { for } \quad t \in \bigcup_{n=30}^{299}\left[\frac{n}{100}, \frac{n+1}{100}\right]=[0.3,3] .
$$

So far we have shown that $\Omega_{k}^{\prime}(q) \geqslant 0$ for $q \in[1,20]$.

$$
\text { 4. The Monotonicity of } \Omega_{k}(q) \text { FOR } q \in[20, \infty)
$$

Let

$$
\begin{equation*}
f(q):=(-1)^{k}(2 k-1)!q^{k}[0,1, \ldots, 2 k-1] \frac{1}{q^{*}+q^{k}} \tag{21}
\end{equation*}
$$

Then

$$
\begin{aligned}
f(q) & =(-1)^{k} q^{k} \sum_{l=0}^{2 k-1}\binom{2 k-1}{l}(-1)^{l+1} \frac{1}{q^{l}+q^{k}} \\
& =(-1)^{k} \sum_{l=0}^{2 k-1}(-1)^{l+1}\binom{2 k-1}{l} \frac{1}{1+q^{l-k}}
\end{aligned}
$$

$$
\begin{aligned}
= & \sum_{l=0}^{k-1}(-1)^{k+l+1}\binom{2 k-1}{l} \frac{q^{k-l}}{1+q^{k-l}} \\
& +(-1)\binom{2 k-1}{k} \frac{1}{2}+\sum_{l=k+1}^{2 k-1}(-1)^{k+l+1}\binom{2 k-1}{l} \frac{1}{1+q^{l-k}} .
\end{aligned}
$$

It follows that

$$
\begin{align*}
f^{\prime}(q)= & \sum_{l=0}^{k-1}(-1)^{k+l+1}\binom{2 k-1}{l} \frac{(k-l) q^{k-l-1}}{\left(1+q^{k-l}\right)^{2}} \\
& +\sum_{l=k+1}^{2 k-1}(-1)^{k+l}\binom{2 k-1}{l} \frac{(l-k) q^{l-k-1}}{\left(1+q^{l-k}\right)^{2}} \\
= & \sum_{l=1}^{k}(-1)^{l-1}\binom{2 k-1}{k-l} \cdot \frac{l q^{l-1}}{\left(1+q^{l}\right)^{2}} \\
& -\sum_{l=1}^{k-1}(-1)^{l-1}\binom{2 k-1}{k+l} \cdot \frac{l q^{l-1}}{\left(1+q^{l}\right)^{2}} \\
= & \sum_{l=1}^{k-1}(-1)^{l-1}\left[\binom{2 k-1}{k-l}-\binom{2 k-1}{k+l}\right] \frac{l q^{l-1}}{\left(1+q^{l}\right)^{2}} \\
& +(-1)^{k-1} \frac{k q^{k-1}}{\left(1+q^{k}\right)^{2}} . \tag{22}
\end{align*}
$$

Now we need the following propositions.

Proposition 7.

$$
\left[\binom{2 k-1}{k-l}-\binom{2 k-1}{k+l}\right] \frac{l q^{l-1}}{\left(1+q^{l}\right)^{2}}
$$

decreases as l increases and $q \geqslant 6$.
Proof.

$$
\begin{align*}
\binom{2 k-1}{k-l}-\binom{2 k-1}{k+l} & =\frac{(2 k-1)!}{(k-l)!(k-1+l)!}\left(1-\frac{k-l}{k+l}\right) \\
& =\frac{(2 k-1)!}{(k-l)!(k+l)!} 2 l \tag{23}
\end{align*}
$$

We want to show

$$
\begin{align*}
& \frac{(2 k-1)!}{(k-l)!(k+l)!} 2 l \frac{l q^{l-1}}{\left(1+q^{l}\right)^{2}} \\
& \quad \geqslant \frac{(2 k-1)!}{(k-l-1)!(k+l+1)!} 2(l+1) \frac{(l+1) q^{l}}{\left(1+q^{l+1}\right)^{2}} \quad \text { for } \quad q \geqslant 6 \tag{24}
\end{align*}
$$

It is easily seen that (24) is equivalent to

$$
\frac{1}{q}\left(\frac{q^{l+1}+1}{q^{l}+1}\right)^{2} \geqslant \frac{k-l}{k+l+1}\left(1+\frac{1}{l}\right)^{2}
$$

however,

$$
\frac{1}{q}\left(\frac{q^{l+1}+1}{q^{l}+1}\right)^{2}=\frac{q^{2 l+2}+2 q^{l+1}+1}{q\left(q^{2 l}+2 q^{l}+1\right)} \geqslant q-2 q^{l-1} \geqslant q-2
$$

because

$$
\begin{aligned}
\left(q-2 q^{1-l}\right) q\left(q^{2 l}+2 q^{l}+1\right) & =q^{2 l+2}-q^{2}-2 q^{2-l} \\
& \leqslant q^{2 l+2}+2 q^{l+1}+1
\end{aligned}
$$

Meanwhile

$$
\frac{k-l}{k+l+1}\left(1+\frac{1}{l}\right)^{2} \leqslant 4
$$

Therefore (24) holds for $q \geqslant 6$, and Proposition 7 is proved.
Proposition 8. For $k \geqslant 2$ and $q \geqslant 6$,

$$
\begin{equation*}
f^{\prime}(q) \geqslant\binom{ 2 k-1}{k-1} \frac{2}{k+1} \frac{1}{(1+q)^{2}}-\binom{2 k-1}{k-2} \frac{4}{k+2} \frac{2 q}{\left(1+q^{2}\right)^{2}} \tag{25}
\end{equation*}
$$

In particular, $f^{\prime}(q) \geqslant 0$ and

$$
\begin{equation*}
f(q) \leqslant \lim _{q \rightarrow \infty} f(q)=\binom{2 k-1}{k-1} \frac{1}{2(2 k-1)} \tag{26}
\end{equation*}
$$

Proof. Suppose first k is even, $k=2 m$. Then (22) and (23) yield that

$$
\begin{aligned}
f^{\prime}(q)= & \binom{2 k-1}{k-1} \frac{2}{k+1} \frac{1}{(1+q)^{2}}-\binom{2 k+1}{k-2} \frac{4}{k+2} \frac{2 q}{\left(1+q^{2}\right)^{2}} \\
& +\sum_{j=2}^{m-1}\left[\frac{(2 k-1)!}{(k-2 j+1)!(k+2 j-2)!} \frac{2(2 j-1)}{k+2 j-1} \frac{(2 j-1) q^{2 j-2}}{\left(1+q^{2 j-1}\right)^{2}}\right. \\
& \left.-\frac{(2 k-1)!}{(k-2 j)!(k+2 j-1)!} \frac{2 \cdot 2 j}{k+2 j} \frac{2 j q^{2 j-1}}{\left(1+q^{2 j}\right)^{2}}\right] \\
& +\left[(2 k-2) \frac{(k-1) q^{k-2}}{\left(1+q^{k-1}\right)^{2}}-\frac{k q^{k-1}}{\left(1+q^{k}\right)^{2}}\right] .
\end{aligned}
$$

By Proposition 7 all the terms under the summation sign are positive. Moreover,

$$
q^{k-2} /\left(1+q^{k-1}\right)^{2} \geqslant q^{k-1} /\left(1+q^{k}\right)^{2} \quad \text { for } \quad q \geqslant 1
$$

and

$$
\begin{aligned}
& (2 k-2)(k-1) \frac{q^{k-2}}{\left(1+q^{k-1}\right)^{2}}-\frac{k q^{k-1}}{\left(1+q^{k}\right)^{2}} \\
& \quad \geqslant[(2 k-2)(k-1)-k] \frac{q^{k-1}}{\left(1+q^{k}\right)^{2}} \geqslant 0 \quad \text { for } \quad k \geqslant 2
\end{aligned}
$$

For odd k, the proof is similar. Thus (25) holds. Furthermore,

$$
\begin{aligned}
f^{\prime}(q) & \geqslant \frac{2}{(1+q)^{2}} \frac{(2 k-1)!}{(k-2)!(k+2)!}\left[\frac{k+2}{k-1}-\frac{4(1+1 / q)^{2}}{q\left(1+1 / q^{2}\right)^{2}}\right] \\
& \geqslant \frac{2}{(1+q)^{2}} \frac{(2 k-1)!}{(k-2)!(k+2)!}\left[1-4\left(1+\frac{1}{6}\right)^{2}\right] \\
& \geqslant 0 \quad \text { fcr } \quad q \geqslant 6
\end{aligned}
$$

and

$$
\begin{aligned}
f(q) & \leqslant \lim _{q \rightarrow \infty} f(q)=\lim _{q \rightarrow \infty}\left[\binom{2 k-1}{k-1} \frac{1}{2} \Omega_{k}(q)\right] \\
& =\binom{2 k-1}{k-1} \frac{1}{2(2 k-1)}
\end{aligned}
$$

Proposition 9. Let

$$
S(q)=4 \sum_{v=1}^{k-1} \frac{v q^{v-1}}{q^{2 v}-1}+2 \frac{k q^{k-1}}{q^{2 k}-1}
$$

Then

$$
S(q) \leqslant \frac{4 q^{2}}{\left(q^{2}-1\right)(q-1)^{2}} \quad \text { for } \quad q \geqslant 1
$$

Proof. We have

$$
S(q)=4 \sum_{v=1}^{k-1} \frac{q^{2 v}}{q^{2 v-1}} v q^{-(v+1)}+2 k q^{-(k+1)} \frac{q^{2 k}}{q^{2 k}-1}
$$

Note that

$$
\frac{q^{2 \nu}}{q^{2 v}-1} \leqslant \frac{q^{2}}{q^{2}-1} \quad \text { for } \quad v \geqslant 1 \quad \text { and } \quad q \geqslant 1
$$

Hence

$$
\begin{aligned}
S(q) & \leqslant \frac{4 q^{2}}{q^{2}-1} \sum_{v=1}^{\infty} v q^{-(v+1)}=\frac{4 q^{2}}{q^{2}-1} \frac{d}{d q}\left(-\sum_{v=1}^{\infty} q^{-v}\right) \\
& =\frac{4 q^{2}}{q^{2}-1} \frac{d}{d q}\left(\frac{-1}{1-q^{-1}}\right)=\frac{4 q^{2}}{\left(q^{2}-1\right)(q-1)^{2}}
\end{aligned}
$$

Proposition 10. Let

$$
g_{k}(q)=\frac{2 k-1}{k+1}\left[1-\frac{4(k-1)}{k+2} \frac{q}{1+q^{2}}\right]
$$

Then

$$
g_{k+1}(q) \geqslant g_{k}(q) \quad k=1,2,3, \ldots, \quad q \geqslant 12
$$

Proof.

$$
\begin{aligned}
g_{k+1}(q)-g_{k}(q) & =\frac{3}{(k+1)(k+2)(k+3)}\left[(k+3)-(3 k-1) 4 \frac{q}{1+q^{2}}\right] \\
& \geqslant \frac{3}{(k+1)(k+1)(k+3)}\left[(k+3)-(3 k-1) 4 \frac{12}{1+12^{2}}\right] \\
& \geqslant 0 \quad \text { for } \quad q \geqslant 12
\end{aligned}
$$

Now we are in a position to prove the monotonicity of $\Omega_{k}(q)$ for $q \in[20, \infty)$. From (16) and (21) we see that

$$
\Omega_{k}(q)=2 k!(k-1)!/(2 k-1)!\prod_{m=1}^{k} \frac{q^{m}+1}{q^{m}-1} \prod_{m=1}^{k-1} \frac{q^{m}+1}{q^{m}-1} f(q)
$$

Hence

$$
\frac{\Omega_{k}^{\prime}(q)}{\Omega_{k}(q)}=-\left(4 \sum_{v=1}^{k-1} \frac{v q^{v-1}}{q^{2 v}-1}+2 \frac{k q^{k-1}}{q^{2 k}-1}\right)+\frac{f^{\prime}(q)}{f(q)}=-S(q)+\frac{f^{\prime}(q)}{f(q)}
$$

By Proposition 9 we have

$$
S(q) \leqslant \frac{1}{q^{2}} \frac{4 q^{4}}{\left(q^{2}-1\right)(q-1)^{2}} \leqslant \frac{1}{q^{2}} \frac{4 \cdot 20^{4}}{\left(20^{2}-1\right)(20-1)^{2}} \leqslant \frac{4.45}{q^{2}} \text { for } q \geqslant 20
$$

Moreover, Propositions 8 and 10 tell us that

$$
\begin{aligned}
\frac{f^{\prime}(q)}{f(q)} & \geqslant \frac{1}{(1+q)^{2}} \frac{4(2 k-1)}{k+1}\left[1-\frac{4(k-1)}{k+2} \frac{q}{1+q^{2}}\right]=\frac{4}{(1+q)^{2}} g_{k}(q) \\
& \geqslant \frac{4}{(1+q)^{2}} g_{4}(q)=\frac{4}{(1+q)^{2}} \frac{7}{5}\left(1-\frac{2 q}{1+q^{2}}\right) \\
& =\frac{1}{q^{2}} \frac{28}{5} \frac{(1-1 / q)^{2}}{(1+1 / q)^{2}} \frac{1}{1+1 / q^{2}} \\
& \geqslant \frac{1}{q^{2}} \frac{28}{5} \frac{(1-(1 / 20))^{2}}{(1+(1 / 20))^{2}} \frac{1}{1+1 / 20^{2}} \\
& \geqslant \frac{4.55}{q^{2}} \quad \text { for } \quad q \geqslant 20 \quad \text { and } \quad k \geqslant 4
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& \frac{\Omega_{k}^{\prime}(q)}{\Omega_{k}(q)}=\frac{f^{\prime}(q)}{f(q)}-S(q) \geqslant \frac{4.55}{q^{2}}-\frac{4.45}{q^{2}}=\frac{0.1}{q^{2}}>0 \\
& \quad \text { for } k \geqslant 4 \text { and } q \geqslant 20 .
\end{aligned}
$$

It remains to check the case $k=3$. For this we shall make a straightforward computation:

$$
\begin{aligned}
\Omega_{3}(q)= & 24\left(\frac{q+1}{q-1}\right)^{2}\left(\frac{q^{2}+1}{q^{2}-1}\right)^{2} \frac{q^{3}+1}{q^{3}-1} q^{3}(-1)[0,1,2,3,4,5] \frac{1}{q^{3}+q^{3}} \\
= & \frac{24}{120}\left(\frac{q+1}{q-1}\right)^{2}\left(\frac{q^{2}+1}{q^{2}-1}\right)^{2} \frac{q^{3}+1}{q^{3}-1} q^{3}\left(\frac{1}{1+q^{3}}-5 \frac{1}{q+q^{3}}\right. \\
& \left.+10 \frac{1}{q^{2}+q^{3}}-10 \frac{1}{2 q^{3}}+5 \frac{1}{q^{3}+q^{4}}-\frac{1}{q^{3}+q^{5}}\right) \\
= & \frac{1}{5} \frac{q^{2}+1}{q^{2}+q+1} .
\end{aligned}
$$

Thus

$$
\Omega_{3}^{\prime}(q)=\frac{1}{5} \frac{q^{2}-1}{\left(q^{2}+q+1\right)^{2}} \geqslant 0 \quad \text { for } \quad q \geqslant 1
$$

This completes the proof of Theorem 1.

Acknowledgments

I thank Professor Carl de Boor for his valuable help. Sections 2 and 4 especially reflect his suggestions.

References

1. C. de Boor, The quasi-interpolant as a tool in elementary polynomial spline theory, in "Approximation Theory" (G. C. Lorentz, Ed.), pp. 269-276, Academic Press, New York, 1973.
2. C. DE Boor, A bound on the L_{∞}-norm of L_{2}-approximation by splines in terms of a global mesh ratio, Math. Comp. 30 (1976), 765-771.
3. C. DE Boor, On a max-norm bound for the least squares splines approximant, in "Approximation and Function Spaces" (Z. Ciesielski, Ed.), pp. 163-175, North-Holland Publishing Company, New York, 1981.
4. C. De Boor, "A practical Guide to Splines," Springer-Verlag, New York, 1978.
5. C. de Boor, S. Friedland, and A. Pinkus, Inverses of infinite sign regular matrices, MRC TSR No. 2159; Trans. Amer. Math. Soc. 274, 59-68 (1982).
6. Y. Y. Feng and J. Kozak, On the generalized Euler-Frobenius polynomial, MRC TSR No. 2088; J. Approx. Theory 32, 327-338 (1981).
7. Y. Y. Feng and J. Kozak, L_{∞}-Lower bound of L_{2}-projections onto splines on a geometric mesh, MRC TSR No. 2178; J. Approx. Theory 35, 64-76 (1982).
8. K. Höllig, L_{∞}-Boundedness of L_{2}-projections on splines for a geometric mesh, J. Approx. Theory 33, 318-333 (1981).
9. C. A. Micchelli, Cardinal L-splines, in "Studies in Spline Functions and Approximation Theory," pp. 203-250, Academic Press, New York, 1976.

[^0]: * Supported in part by the United States Army under Contract DAAG29-80-C-0041.

