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For an integer k > 1 and a geometric mesh (¢g")®, with g € (0, o), let
Ml.k(x) = k{qls-“’ ql+k}(' —X ’i_ 1,
Npx) = @**-4q" M, (x)/k,
and let 4,(g) be the Gram matrix (f M, , N, .}, ,cz. It is known that || 4,(g) "}l is
bounded independently of g. In this paper it is shown that ||4,(g) "'l is strictly
decreasing for g in [1, 00). In particular, the sharp upper bound and lower bound
for A,(g)™" are obtained:

1

2k -
% 1< e < (F) |5 av

for all ¢ € (0, ).

1. INTRODUCTION

Let x :=(x,)®,, be a strictly increasing biinfinite sequence with x, . :=
lim,, , , x; and I :=(x_, x, ). Further, let

§:=mS, (I) = {f € C**() N L ();

flix;.%,,» 15 @ polynomial of degree < k}

be the normed linear space of bounded polynomial splines of order k& with
breakpoint sequence x and norm | f|| := sup,, | f(x)]. We shall be concerned
with Pg, the orthogonal projector onto S with respect to the ordinary inner
product

(; 8) =] S g(x) dx,
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but restricted to L (7). We want to bound its norm

1Pslleo == sup [|Ps SIS -
feL W)

In 1973, de Boor raised the following
Conjecture [1].

sup || Ps||,, < const, < oo.

This conjecture has been verified for k = 1, 2, 3, 4 (see de Boor [3] and the
references cited there). De Boor [2] also obtained a bound of Py in terms of
a global mesh ratio. In general, however, this conjecture seems hard to solve.
For a geometric mesh x, Hollig [8] recently proved the boundedness of Pg.
Later on, Feng and Kozak [6] reproved this result. Before recalling some
results of theirs, we need to introduce some notations. For the mesh
x=(x,)%,, let

M i (x) = K[ Xy ) ¢ = x)57
N; ) = (X4 omees Xpadd = 1 XD = 247!
= (X;4x — X)) M, 1 (x)/k.
Set
A, ) :=JM,.‘,(NJ.‘,( for i,je’.

Let A, € R**? be the biinfinite matrix given by the rule
G, - A6, j) for (,)€EZXL.
It was shown by de Boor [1] that
D7 [ 4ic Moo S Pslloo < 144 Mo

where D, is a constant depending only on k. Thus bounding P is equivalent
to bounding 4, .

Let us restrict ourselves now to a particular case where x is a geometric
mesh: x :=(¢')°,, for some g€ [1, 0) (note that the case g € (0, 1] is
symmetric to the case g € [1, ); see [6, 8]). Spline interpolation at a
geometric mesh was first investigated by Micchelli [9], who based his
argument on the properties of the so-called generalized Euler—Frobenius
polynomials. Later on, Feng and Kozak [6] developed such a consideration.
Earlier, and in a different way, Hollig {8] made a more precise investigation
into the boundedness of L,-projections onto splines on a geometric mesh. In
particular, he got the following elegant result (see [8, Theorem 5}):
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THEOREM A. For a geometric mesh x :=(q')°,, with q € (0, ), let
A,(q) be the biinfinite matrix (| M, ,N; ,); jcz. Then

14:@) " o = 12:(a) 7", (D
where
k v +1 k—1 qv +1
Q(q) =2k (k— 1)t 2 [ L
k(Q) ( ) 11:[1 qu _ 1 o qv - 1
k 1

X 2
L U mrrorver @

with t .= log q. Moreover,

22k
limQ,(g)=—
im 2,0)= ()

Z(1+yr"§ 3)

jeZ
. 1
im0 =g @

Based on numerical evidence, de Boor raised the following
Conjecture. ,(q) is a monotone increasing function on [1, o).

This conjecture was verified for k < g by Feng and Kozak [7]. They also
showed that 2,(q) < 1/(2k — 1) in the same paper.

The purpose of this paper is to confirm the above conjecture. Thus we
have

THEOREM 1. £2,(q) is a monotone increasing function on |1, ). In
particular,

2k -1
%-1<ia@ < (5) [Sasn . ©
Jje

Note that 2,(g)=1 and that 2,(9)=3% in terms of a straightforward
calculation. Hence we can restrict ourselves to the case k£ > 3 from now on.
In Section 2, we shall give an alternative proof of Theorem A. Sections 3
and 4 will be devoted to proving the monotonicity of 2,(g) for g € [1, 20]

and g € [20, o), respectively.
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2. THE BOUND FOR 4,(g) "

As before, x = (¢')®, is a geometric mesh with ¢ € (1, o) and ¢ =log q.
Consider

do(x) =10, L,..., Rk — D}, x*/(¢* +¢*) for x€[l,q].

It is easy to verify that

q'¢5’ (@) + g0’ (1) = [0, 1., 2k = )], {z(z = 1) -+ (z =1+ 1)}
=0, for I=1,.,2k—2,
=1, for I=2k—1. (6)

Since ¢, is a polynomial of degree 2k — 1, ¢{** ™" is constant in [1, g]. Hence
(6) yields that

$ ) =1/(g" +¢*7")  for x€[l,q]. M
Now we extend the do.nain of ¢, to (0, o) as
9(x) = (—g")" dolg™"x)  for ¢"<x<q", meL
From (6) we assert that ¢ €5,, ,, and that
#@™) = (—¢")" 4,(1), meL (®)
It follows that

[xl bbbt xm] ¢ — [xo et xm—l] ¢

[Xo, Xy geees Xy 15 xm] ¢ =

X — X
_ _qk—MH[xor--’ Xp—1] 9 = [Xgsres Xp_1] &
q" —1
k—m+1
q +1
= — W [xo,..., xm_l] ¢-
By induction on m, we can obtain
k k—m+1
q +1
[xosxlr"’ xk] ¢=("1)k H m ¢0(1)
1
m=1
k m
qm +1
=1 (11 25 ) oo )
m=1
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From (8) we deduce that
[Xises Xi 4] 8= (= 1) [ X Xi] 8- (10)

By Peano’s theorem (see [4])

[Xpss X1 6 = [ M 06) 9% Gr)/RL .

Now we get

[ M40 6% @)/t dix = (=1)' (= 1)k<n Z:ii)%(l). (11)

m=1

Obviously, §¥/k! € S, ,; hence ¢¥’/k! may be expanded in a B-spline series

¢(k)/k' Z 1 o

however, ¢'¥(gx) = —¢¥’(x). Thus

Zaij.k(x)_ z a;N; i (gx) = — Zaij—x.k(x)— Z ;41 Nj ()
By the uniqueness of B-spline expansion we assert that

Ay =0, JEZ.

Thus we can write
¢(k)/k!=cz (_l)iNj,k’ (12)

where C is a constant to be determined. Now (11) and (12) together give

k

Hj . )¢0<1) (13)

m=1

N ) [ M40 N e = (1) €1

jez

Let

m

20 =1t ([T L27) (14)
Then (see de Boor et al. [5])
4@ o = 12(@) "

It remains to determine C. Differentiate (12) & — 1 times,

g =V k) = C (Z (—l)iN,-,k)(kq)'
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One the one hand,

1
D x) ket = k!q—jqu‘_ for x€(Lg)

On the other hand (see [4]),
. k-1
ANCIEAY

2(k—1) (g+1)k—2) g¢*7+1 J (o k=1y—j
= —1 N,
¢ -1 g1 g—1 j;z( Y@ TN

— 20—t [ 5 [ Y@

Thus, for x € (1, q)

. (k—1) 1 k=1 qm+1
N7 — 2k —1)! :
(Serm)  @=2-n =g [ 5

From the above calculation we get
1 k-1 qm + 1
qk_1+1 m=1 qm—'l

C~'=k! (g + g%~ ") 2(k — 1)!

k—1 m 1
=2k! (k— 1)t g* [] qmil. (15)
m=1
Finally, (14) and (15) yield that
+1 5 gm4 1
Q@)= (~1)* 2k! (k= 1)! H T Z g"po(1)
m=1
k k-1
q" +1 q" + 1
= (—1)k2k! (k — 1)
-1 ( )ml;llqm_lﬂlqm_l
X g4[0, 1,..., 2k — 1] ,1 - (16)

q +4

We follow the procedure in [9] and use a well-known formula for the
divided difference to get

1
g +q*

(—‘l)qu[ s L. ’2k_1]

2k—1 -1

- l)k : Uc bl fc, (H (z—m)(e““uq*)) dz, (7

R j=0 m=0



MAX NORM BOUND FOR L, SPLINE PROJECTORS 299

where C, and C, stand for positively oriented circles with centers at 0 and j
and radius R and r;, where R is sufficiently large and r; sufficiently small,
Jj=0,1,.,2k-1.

Making R - o, ;-0 (j=0,1,..,2k —1) in (17) and using the residue
theorem we get

(=1 g0, 1 2k — 1] - L

+ g
2k—1 -1
= (—1g*(=1) 3 RS, _1cns 2mnesk ( 1 e +q*))
jel
%—1 p; . —1
=Y (’ [1 [—-——-*I(z+2n1)—v+k])
jel »=0 t

2k—
— 2 tzk—l/( H [n+27y—l(k—l’)t])

k
1
:tZk—l Y‘
it D (m+2m)* + ()*

Thus (2) is proved by substituting the above equality into (16). Then it is
straightforward to verify (3). As to (4), we have

lim 2,(g) = (~1)* 2Kl(k — DY/(2k — 1)! lim z,kz =n™ (Zkl— 1> 7%4_"
=20 (0[S o ()
s (5]
w4 o[22+ (3]
+ (- 1)"“; (2k )‘

k
=2(~1)k/( [(_])k (Zk— 12)+(—1)k+1%<2kk—1)]

% =
T 2k—1 %—1

This ends the proof of Theorem A.
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3. THE MONOTONICITY OF £2,(g) FOR ¢ € |1, 20]

Recall ¢t =log g. Let
k evt+lklevt+1 k 1

fk(t) = 2! 1—[ H vt Z H

oo €” v=1 € — L1 je7 ) (”+27zj)2+("t)2.

Then Q,(e") = 2k! (k — 1)! f,(£). Consider f1(£)/f.(t). We have

%{ }uk,,(tm,,-(t%

where

u, (1) = Iil (m+ 27IJ;2 + ()} /g 2 Ij (m+ 27tl;2 + (n)? 2
Ji ) =2k—1+ (i + Zi: )( ve”  vie” )

= evt+ 1 evt_ 1

3 Vk‘ 2(m)? .
i (4 2m)" + ()’

(18)

(19)

If we can show that f;(#)/f,{(t)>0 for 1€ [0,3], then 2;(g)>0 for
g € [1,20], because e’ > 20. For this it suffices to show f o(¢) >0, since
S i) 2 fio®) (G=1,2,.) from (19). Let us first make the following obser-

vation:

ProrosITION 1.

n? 2xe

-
1t + (cx)? 7 e —1

X

for x€[0,0) and c€[l,5/4].

Proof. Each of the following inequalities is equivalent to Proposition 1:

e — 1> (1 4 ¢’x¥/n?) 2xe”,

Ms

2% (n + 1) > +cx2/n2)(z "/n!),

0

E]
[
o

118

1 2 1
et [t

3
It

An induction argument on n shows, however, that

c? 1

1
2/t D>t for n>2 and c€ [1,5/4).

77 (n—2)

Therefore Proposition 1 is true.
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PROPOSITION 2.
27 S n? N n’
n? + (4x/3)* 7 n* + (5x/4)*  n’ 4+ (5x/3)*°

Proof.
2(n? + 25x%/9)(n? + 25x%/16)
— 27* + 12507%x%/144 + 625x%/72
> 2n* + 113772x/144 + 625x%/81
= (2 + 16x?/9)[(n* + 25x*/9) + (x* + 25x%/16)].

Multiplying the above inequality by #%/[(n* +Ex)(#* + £ x?)
(n* + 2 x?)], we obtain Proposition 2.

PROPOSITION 3.

Siw1,0(0) 2 frolD) Jor 120 and k2>3.

Progf. We shall argue by induction on k. For k= 3, we have

27’ 2-3c® 24"
fA,o(t) "f3,0(t) = 7+ (402 Tl T W _ 1
Set x := 3¢. Then Propositions 1 and 2 yield that
n? 2xe”
— > —
Fual®) = 110> (7 Gar ~ o)
n? 2(4xe*"*/3)
-~ >0.
* (nz TG e ) >
Suppose now that k > 4. Then (k + 1)/k < 5. We have
2n? 2ktek 20k + 1) e+

ﬁw:,o(t)—f;(,o(t): nzt[(k+ l)t]z - ekt - 2+ __

_ n? 2ktekt )
B (n2+[(k+1)t]2 2%k
N 712 2(k + l) te(k+l)t
<7T2 + [(k+ 1)[]2 e2(k+1)t -1 )

20,

according to Proposition 1. Thus Proposition 3 is proved.
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Consequently, f; (¢) > f; 4(¢) for all k>3 and j> 0. The remaining task
of this section is to elaborate the nonnegativity of f; o(#). For this we need
some estimates.

PROPOSITION 4. Let h(x) = ((xe*/(e* + 1)) — 3x)/x* Then h'(x) <0 for
x2>0.

Proof. h(x)=(e*—1)/2x(e* + 1) and

1 x(e¥+1)eF—(F —D)[(e* + 1) +xe*] 14 2xe* —e™

A (x) =

2 [x(e* + 1)]? T+ 1)
while

o0 n [« o) n.n
. 2 x' 2"x
1+ 2xe*—e —1+2x"§0;? ”2::0 -

o] 22n—l_

= —(—7—”—)x"<o for x30.
n=3 ¢

PROPOSITION 5.

—xe*/(e* — 1) > —1 — {x — f5x*.

Proof.
1
(1+—2—x+ 5 xz)(e“—-l) xe*
o] xn+l 0 1xn+l e} 1 xn+2
_,,gz n!_,,;l_Z_ n’+,§,E n!

Now we are in a position to prove that f; o(¢) >0 for ¢ € [0, 0.3]). Write

te' te' £
f3'o(t)=2 (l +et+ 1 e —1 ‘—t2+7r2)
5 2e*  ue™  () )
e*+1 e¥—1 (20 +n?

(i 3te* 3te’ (3¢)? ) 9¢°
( e+1 -1 @B+t 49t
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It follows from Proposition 4 that, for ¢t € [0, 0.3],
te'/(e" + 1) —t/2>h(0.3) > >0.248¢%,
2te™/(e* + 1) — 2t/2 > h(0.6)(2t)* > 0.242(21)?,
3te¥/(e¥ + 1) — 3t/2 > h(0.9)(31)? > 0.234(31)>.

In connection with Proposition 5, we obtain

t t 2 1 1
2( e __ e ! 2)>2(0.248—————2-)t2
T

I
+e'+1 e—1 t'+n 12
> 0.126¢2,
2te” 2te™ (20)? 1 1
2 - - >2(0242 ——— ) (2)°
(1 P W W Gy ) (02 12 n2> @)
> 0.458¢2,
3te* 3te’ (3t)2
A 234 — ——— ) (3t)?
+e3‘+1 e'—1 (3 + (O 34 7z>()
> 0.44412,
912 9z2
Twer s T 2o

As a conclusion, f; 4(¢) > (0.126 + 0.458 + 0.444 — 0.912) ¢* = 0.116¢%, This
shows that

S >0 for ¢€[0,0.3].

The next case we are going to treat is that of £ € [0.3, 3]. Let

o(t) = 272 2n? N n? — 9¢?
t2 4+t 4t2+7z2 n? 4+ 92"
A 8re?! 6te’
W(t) = eZt . 1 + e4l - 1 e6t _ 1 *

Then f; o(£) = v(t) — w(t). Tt is easily seen that v'(r) < 0 for £ € [0, ). We
claim that w'(¢) <0 (0 < ¢ < o), too. This is guaranteed by

PROPOSITION 6. Let g(x) := 2xe*/(e** — 1). Then g'(x) <0 for x > 0.
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Proof. g'(x)=— (2¢*/(€** — 1)*)(1 + x + xe** — e**), while

n..n

o]
l+x+xe—e=(1+x)—(1-x) Y
n=0

Accordingly,
S3,08) = v(8) — w(t) > v(b) — w(a)

To determine the positivity of f; , we wrote a Fortran program and found

for t€[a,b] with 0<a<b. (20)

that

n+1 n
v (—@—) —w (W) >0001  for n=30,31,.,299.

Thus by (20) we assert that
n n+l
fg'o(f) >0 for t€ [W, —160—], n =30, 31,..., 299.

Therefore

299 n n+l
fio@®>0  for te (J [100 00 ]:[0.3,3].

n=30

So far we have shown that £2(q) > 0 for ¢ € [1, 20].

4. THE MONOTONICITY OF £2,(g) FOR g € |20, o)

Let

1
— _ k —_
f(g) = (=1)* 2k — 1)1 g¥[0, 1,..., 2k I 1)

Then

2k—1

2%k ~ w1__
r@=Eret S (H e

2kt 2%~ 1 1
= (—1)k 1)+ .
1 ,_Zo(l) ( [ >1+q”“
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= kil (____1)k+l+l (2k— 1 ) qk—l
1=0

! 1+¢*!

e <2k—1> ) S

305

2k — 1 1
e _1 k+i+1 ( ) .
e )75, L) T
It follows that

k—1 _ _ k—1-1
f’(q)= Z (_1)k+1+l <2kl 1) (k l)q
=0

(l +qk—l)2
2k-—-1 2k_l (l__k)ql—k—l
4+ Y‘ —1 k+1 ( )
I=7+l ( ) l (1 +ql—k)2
k 2%k—1 g~
=¥ (1) ( )—
_F cy- (Zk“ ! )._______"1'_'
= k+1 ) (1+4q"?
_& 1y [<2k~1)_ <2k—1>] lg'”!
= k-1 k+1 (1+44%?
B qu—l
HET @2)
Now we need the following propositions.

PROPOSITION 7.

[(Zk—l 2k — 1 Ilg'~!
k—1 ) (k+l)](1+q’)2
decreases as | increases and q > 6.

Proof.
(211::11 )_ (2:-{—-11 >=(k—l()2!k(k——l)l!+l)! { k_l)

T k+1
(2k —1)!
T (k=D (k+ ) 2 (23)
We want to show
2k —1) 2l lg'~!
k—DV(k+I " (144"
(2k — 1)! I+ Dq'
> k—i=Drgir o 4D

W for q > 6. (24)
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It is easily seen that (24) is equivalent to
1 I+1 1 2 k—l 1 2
7l ) 2 ()
g \g+1 k+1+1 !

i (ql+l+1)2_q21+2+2q1+1+1
q

however,

>q-29"">q-2,

g+1 /] gq@"+2'+1) 7
because
@—29""")q@" +2¢'+ 1)=¢""" —q* — 29"
<@t 429" 4 1.
Meanwhile

k—1 1\2
A i Y «a
k+l+l<+l)\

Therefore (24) holds for ¢ > 6, and Proposition 7 is proved.

ProrosiTiON 8. For k> 2 and q> 6,

, k—1\ 2 1 k—1\ 4 2
r@> () Jorare (e e aeme @
In particular, f'(q) > 0 and
2k — 1
r@<timr@= (%" )@= 26)

Proof. Suppose first k is even, k = 2m. Then (22) and (23) yield that
)= 2k—1y\ 2 1 _<2k+1) 4 2q
1 —(k—l >k+1 (1+9g)* k=2 ) k+2 (1+¢*)°
+’”Z‘1 (2k —1)! 22 —-1) -1)g¥?
[(k—2j+1)!(k+2j——2)! k+2—1 (14+g¥°1)?
B (2k — 1)t 2.2 2jqv! ]
(k=2 (k+2— D! k+2 (1+g¥)?

(k—1)g“?* k¢! ]
T+ T+a |

j=2

+ [(Zk ~2)
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By Proposition 7 all the terms under the summation sign are positive.
Moreover,

A+ gV > (1 + 44 for g>1,

and
k-2 k—1
q kq
2k — 2}k —1 —
( )( ) (1 _+_qk—1)2 (l +qk)2
qk—l

> [(2k ~ 2)(k — 1) — k] >0 for k>2.

ey >
For odd k, the proof is similar. Thus (25) holds. Furthermore,

2 2k — 1) k+2  4(1+1/g)
(1 +q)7 (k—2)! (k +2) [k—l q(1+l/q2)2]

> (1+2q)2 (k—(zzlg!?ljﬁz)! = (”%)]

>0 fer g>6,

f(@)2

and

r@<tim r@=tim | (37 ) 320

N (2::11 )2*(%%1—)

PROPOSITION 9. Let

k—1 v—1 k—1
vq kq
S(q)=4 —+2 .
( DZ.] qZ _ 1 qlk _ 1
Then
4q*
S@) < or g2 1.
I<@-ng-r e
Progf. We have
k-1 q2v qZk
S(q)=4 Z o vq—(u+l) +2kq_(k+l)"‘2k_'
v=1 q q -1

640/37/4-2
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Note that
9" < g for v>1 and g> 1.
q2v_1 q2_1
Hence
S@) < 4‘12 i vq—(v+l):ﬁ2_i<_ i q—u>
T -1 g g’ —1ldg\ =
_4q° d( —1 )_ 4q*
@ —1ldg\1—g7'] (@ —-Dg—-1)7"

ProrosiTION 10. Let

gk(q)ZZk—1[1_4(k—l) q ]

k+1 k+2 1+4°
Then
g @>gle k=123, g>12
Proof.
3 q
8+1(9) — &(q) = T DRI DELD) [(k+3)—(3k— 1)4qu]
3

12
> HT Dkt DK 3) [(k+3)_(3k‘1)4 1+122]

>0 for g>12.

Now we are in a position to prove the monotonicity of £2,(q) for
g € [20, ). From (16) and (21) we see that

2,0 =2k - 1y -0t [T 551 T 250 s

—1 29"
Hence
2.(9) ( e, kgt ) f'@ _ '@
e +2 + —S(q) + -
o\t TRy TS0 Ry
By Proposition 9 we have
4 4
: 4
S(g) < ) ! 420 < 4.43 for g > 20.

7 (q D@1 S @ - DRIy < ¢



MAX NORM BOUND FOR L, SPLINE PROJECTORS 309

Moreover, Propositions 8 and 10 tell us that

Sf'(q) 1 42k—-1) ak—-1) q 1.
f@) ~UtaF k+1 [“ Py 1+¢]‘xl+m2“@)

4 __ 4 T 2g
> 0= s (1T
28 (-1 1

(l-i-l/q)21+l/q2

5
28 (1-(1/20) 1
75 (14 (1/20))° 1 + 1/20°

_ 1
-
1
q2
4.55

2

q

Vv

for ¢>20 and k>4.

Vv

Therefore

%) _ L@ 455 44501
2,(@)  f@) 5@)> ¢ ¢ 7 >0

for k>4 and g¢>20.

It remains to check the case k = 3. For this we shall make a straightforward
computation:

q+1>2<q2+1>2q3+1 s t
0 =24 —1)[0,1,2,3,4,5] —
1(9) <q_1 7 —1 q3—1q( ] ]q+q3

24 (q+1>2<q2+1)2q’+1 3< 1 s 1

T120 \g—1/) \gP=1) F=1 1+¢° ~q+q°
1 1 1 1
+10 s — 10— +5 -
9 +4q° 2c1’+ g +q* q3+q5)
1 gt 41
5q¢'+qg+1°

Thus

1 g —1

95(‘1)=?———(q2 P =0 for g>1.

This completes the proof of Theorem 1.
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